Mycorrhiza-project_1920x1080Group picture with the students from Dragonskolan who participated in the Mycorrhiza project, Sabine Kunz (2nd from left in the front row), Elisabeth Uppsäll (5th from left in the front row) and Judith Felten (1st from right in the first row)

[2017-03-24] Today, twenty students from Dragonskolan presented their results from the “Mycorrhiza project”, a six-month project together with Judith Felten’s group from the Umeå Plant Science Centre (UPSC). The project aimed to teach scientific methodology based on the interaction between mycorrhizal fungi and plant roots.

Do forest trees grow better when their roots are growing in interaction with mycorrhizal fungi? How do those roots look like? How many different fungal species are growing in forest soils and how can we detect them? These were questions the students tried to find answers to. Sabine Kunz, postdoctoral researcher at the UPSC, and Judith Felten, assistant professor at the Swedish University of Agricultural Sciences, developed this project in collaboration with Dragonskolan.

“We designed the project together with the biology teacher Elisabeth Uppsäll from Dragonskolan in Umeå. Our idea was to bridge the gap between biology lessons at school and scientific research,” says Sabine Kunz. “The students got access to specific scientific methods we are using for our research and gain insight into our work as researchers. There are many things you need to consider when planning experiments. This is best experienced when you do the experiment yourself and evaluate your results.”

“It has been great for us to participate in this project”,Students greenhouseStudents working with fir trees in the greenhouse (Photo: Sabine Kunz)adds Elisabeth Uppsäll. “It is important to get students to understand how scientists work and what methods are used to answer scientific questions. Sabine has been an invaluable link between the students and the UPSC because she is not only researcher but has also experience with teaching at school and she knows how to address students. We have had many nice meetings developing this project and exciting discussions during the full course of the project, weather we were digging up roots in nature or during the final seminar today.”

The students worked in smaller groups with different research questions. They went into the forest and dug up roots and soil and brought it to the lab. There, they used among others, DNA analyses to detect different fungal species in the soil. They tested whether young spruce trees grow differently in forest soil that contained mycorrhizal fungi than spruce trees in commercial planting soil. They observed roots from the forest under the microscope and they investigated whether the architecture of the plant root system changes when it is in symbiosis with the fungi.

“The mycorrhizal symbiosis is really fascinating. It is not visible until you dig up a root and look at it under the microscope but it is very important for the forest ecosystem,” says Judith Felten. “We hope that we could inspire the students by our project and that they now see the forest with different eyes.” 
After the experimental part, the students got a crash course in scientific data analysis. They learned how to edit a microscopic image, how to present data in diagrams and graphs and how to interpret results. They presented their results today in short talks to researchers and staff members of the UPSC.

The project was financially supported by the Kempe Foundations.

For more information, please contact:

Judith Felten
Umeå Plant Science Centre
Department of Forest Genetics and Plant Physiology
This email address is being protected from spambots. You need JavaScript enabled to view it.
+46 (0)90 786 8435

Sabine Kunz
Umeå Plant Science Centre
Department of Forest Genetics and Plant Physiology
This email address is being protected from spambots. You need JavaScript enabled to view it.
+46 (0)90 786 8628

Elisabeth Uppsäll
Dragonskolan Umeå
Dragongatan 1
903 22 Umeå
This email address is being protected from spambots. You need JavaScript enabled to view it.
+46 (0)90 16 24 92

More information about Dragonskolan
Vetenskapslunch2017 SJansson 1920x1080 2Vetenskapslunch February 2017 (Umeå University)
Stefan Jansson, plant scientist at the UPSC and Professor at Umeå University, was awarded the 2017 ÅForsk “Kunskapspris”. He is being honoured for his commitment to transfer scientific knowledge to the public.

The ÅForsk foundation awards every year “kunskapspriset”, a price that values
outstanding contributions to the dissemination of knowledge. Stefan Jansson was awarded this year with the following motivation:

“Stefan Jansson is a committed and untiring public educator who fights well and hard for knowledge. He is constantly active in the public debate, taking part not only in humoristic programmes but also in political debates. He informs about both his own and other’s research to school kids as well as to pensioners. He is active in bringing knowledge into the debate on GMO and organic farming to counteract fact resistance.”

“I feel incredibly honoured and glad”, says Stefan Jansson. “Actually, I think there should be more prizes that encourage researchers to use their knowledge in the public debate. It’s probably never been more important than at present.”

The candidates for the ÅForsk price are nominated by the Universities . One very prominent awardee was Hans Rosling, a Swedish role model in the debate on fact resistance who has received the price in 2006 but has recently passed away. “He has left great footsteps to follow in”, says Stefan Jansson. “very many like me will be needed to fill his shoes”.

Link to the press release from Umeå University 
About ÅForsk
For more information, please contact:
Stefan Jansson, Department of Plant Physiology
Phone: +46 70-677 23 31
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Six researchers from UPSC developed a concept for more sustainable urban farming. They presented their idea last November at PLATSEN in Umeå, a conference that aims to bring together different actors to discuss about sustainable developments. A short video describing their so-called eMTE concept is now available online.

The concept called eMTE (electronic Multi-Trophic Ecosystem) comprises several stages of a food chain like aquaculture, compost recycling, bioreactors as well as aero-/hydroponics. These so-called trophic layers are electronically controlled and interconnected with each other to form a small-scale ecosystem. Like this, nutrients produced in one trophic layer can support another layer reducing the amount of waste and energy that needs to be invested to produce food. Employing electronics offers great possibilities to monitor the different trophic layers and therefore makes the entire ecosystem more modular, which thus eases its use within complex structures such as found in cities.schemeSchematic overview of the eMTE concept

The eMTE project was initiated by Olivier Keech, assistant professor at Umeå University. His team, namely Nicolas Delhomme, Simon Law, Stefano Papazian, Alonso Serrano, Bastian Schiffthaler and Bernard Wessels, consists of fundamental scientists with different specialisations. All of them are driven by the idea to improve urban farming and urban food production while in parallel increasing the awareness about human relationship to ecosystems.

“It was great to get the opportunity to present our eMTE concept at PLATSEN”, says Olivier Keech, leader of the eMTE project. “We got lots of positive feedback as well as new contacts to collaborate with, which is encouraging. Our idea is to develop this project further so it can be soon integrated into existing and novel urban farming projects.”

PLATSEN is thought as a platform where decision makers, politicians, scientists, NGOs and people from public and private sectors can meet and exchange and discuss ideas about sustainability in an urban environment. The event is initiated by the Swedish Scientific Council for Sustainability in collaboration with several other actors from the public and private sectors e.g. Umeå Municipality and Umeå University.

For more information have a look to the video or contact Olivier Keech: This email address is being protected from spambots. You need JavaScript enabled to view it.
OveNilsson 1920x1080
Six new members were elected at the General Meeting of the Royal Swedish Academy of Science on the 11th of January 2017. Ove Nilsson, director of the UPSC and professor at the Swedish University of Agricultural Sciences, is one of them. The membership honours exclusive recognition of successful achievements in research and outstanding services to science.

The other new members are Rikard Holmdahl from Karolinska Institutet, Ruth Palmer from the University of Gothenburg and Jarone Pinhassi from Linnaeus University and the two Nobel laureates May-Britt Moser and Edvard Moser, both from the Norwegian Kavli Institute for Systems Neuroscience. All members are divided according to their scientific focus into different scientific disciplines, called classes. Ove Nilsson and Jarone Pinhassi are assigned to the class for bioscience while the other four belong to the class for medical sciences.

There have been three other UPSC researcher elected to the Academy previously: Gunnar Öquist, Göran Sandberg and Stefan Jansson. Today, the Academy has about 625 members, 450 from Sweden and 175 foreign members. It is a non-governmental scientific organisation that awards every year the Nobel Prizes in Physics and Chemistry, the Sveriges Riksbank Prize in Economic Sciences and many other prizes. The members take part in the Academy’s committees and panels and in the selection process for the prizes. The main goal of the Academy is to promote sciences and strengthen their influence in society.

Link to the announcement at the Royal Swedish Academy of Science:

Picture 1920x1080

[2017-01-19] UPSC and SweTree Technologies announced today that they have entered into partnership with the VIB Center for Plant Systems Biology to accelerate research on tree value and productivity. The joint research collaboration aims to identify new genes for growth increase in trees and is envisioned to strengthen all involved parties. The study results will be published in leading scientific journals.

The joint project of Belgian and Swedish scientists builds on accumulated experience on functional genomics of genes controlling growth in annual plants as well as trees. This partnership combines four important assets: the strong research on tree biology and genomics at UPSC; the excellent industrial tree biotechnology capabilities of SweTree Technologies; the world-leading expertise in plant growth and productivity of the research group of Dirk Inzé (VIB-UGent); and the outstanding expertise in bio-informatics and comparative genomics of the lab of Klaas Vandepoele (VIB-UGent).

“This agreement will bring the UPSC and VIB research environments closer together, by exchanging researchers more frequently and by arranging joint scientific meetings”, says Ove Nilsson, director of UPSC. “We are very excited about this opportunity to deepen our scientific collaborations with the VIB Center for Plant Systems Biology, one of the strongest research environments in Europe for experimental plant research. It is an excellent complement to our research interests and we are especially excited about the possibilites to make cutting-edge comparative genomics analysis between Arabidopsis, maize and poplar trees.”

VIB and UPSC will share all data and develop new bioinformatics tools to identify key conserved regulators of growth and wood formation. “My team is passionate about understanding plant growth and how this is controlled by both intrinsic development programs and environmental cues”, says Dirk Inzé. “By using the experimental advantages of both Arabidopsis and maize as model systems we have made remarkable progress in understanding plant growth and crop yield. And we’re just getting started.”

In a first joint-research project, the researchers will test identified key genes for their growth and yield-promoting abilities in Arabidopsis, maize and poplar trees. SweTree Technologies will contribute to the collaboration with knowledge from tree plantations and they will test the best lead genes in Eucalyptus.

“We are delighted by the collaboration between UPSC, VIB and SweTree Technologies”, says Carl-Gustav Löf, CEO of SweTree Technologies. “With our joint efforts, we anticipate to take important steps towards significantly increasing the values of forestry plantations and agricultural crops.”

Left: Klaas Vandepoele and Dirk Inzé from VIB Center for Plant Systems Biology (photo: Karel Spruyt); Right: Ove Nilsson from UPSC and Carl-Gustav Löf from SweTree Technologies (photo: Anne Honsel)

Ove Nilsson (Director UPSC): +46 70 286 9082

VIB for Plant Systems Biology
Dirk Inzé (Science director VIB Center for Plant Systems Biology): +32 477 695 746
Griet Verhaegen (Business Development Manager VIB): +32 477 61 07 72

SweTree Technologies
Carl-Gustav Löf (CEO SweTree Technologies): +46 70 609 95 10
URsamtiden 1920x1080 2

Forskare från Umeå Plant Science Centre – Umeå universitet och SLU – berättar om sin forskning.
Populärvetenskapliga föredrag i svenska och engelska.
Kaffe och te i pausen.
Alla är välkomna!
Researcher from Umeå Plant Science Centre - Umeå University and SLU - talk about their research.
Popular science lectures in Swedish and English
Coffee and tea will be served in the break.
Everyone is welcome!

Tid: 9 mars kl  12:00 – 16:00
Plats: P-O Bäckströms sal, SLU

Preliminärt program:
 12.00 Välkommen 
  Natalie von der Lehr (moderator, frilansjournalist)
 12.05 Hur vet träden att det är höst? (svensk presentation)
  Stefan Jansson (professor, Umeå universitet)
  På hösten får träden sina höstfärger och bladen faller till slut men hur vet träden egentligen att hösten kommer? Professor Stefan Jansson vid Umeå universitet förklara hur trädens kalender fungerar och varför bladen blir gula på hösten.
 12.30 How do plants make plumbing pipes from cells? (engelsk presentation)
  Sacha Escamez (postdoktor med Hannele Tuominen, Umeå universitet)
  Sacha Escamez, postdoctor at the UPSC, will explain how plants utilize some of their cells to build pipe-like structures that allow them draw water and nutrients in the soil in order to distribute it throughout their bodies.
 12.55 Fotosyntesen - ett samarbete mellan cellens energifabriker (svensk presentation)
  Per Gardeström (professor, Umeå universitet)   
  Per Gardeström, professor vid Umeå universitet, kommer att förklara hur fotosyntesen fungerar för att med hjälp av solljus fixera koldioxid från luften. Han ska fokusera på samarbetet mellan kloroplaster och mitokondrier som är båda delar av växtceller och viktiga för deras energiförsörjning.
 13.20 Traffic in plant cells - sending cargo the right way (engelsk presentation)
  Anirban Baral (postdoktor med Rishikesh Bhalerao, SLU)
  Anirban Baral, postdoctoral researcher at the UPSC, will explain how different compartments with different functions in a plant cell exchange information and material between each other. He will show with specific examples what happens with the plant when the traffic is not regulated properly.
 13.45 Chemicals as tools to dissect plants (engelsk presentation)
  Siamsa Doyle (forskare med Stéphanie Robert's, SLU) 
  Siamsa Doyle, researcher at the UPSC, will talk about the use of chemicals that block proteins controlling plant functions. The effects of these chemicals on the plants can tell researchers a lot about the proteins and their roles in plant growth and development. Like this, chemicals can be used to virtually “dissect” plants and learn more about them.
 14.10 Paus och kaffe
 14.40 Getting together: the fungus-root symbiosis in forest tree (engelsk presentation)
  Judith Felten (universitetslektor, SLU)
  Judith Felten, group leader at UPSC, will talk about the knowns and unknowns of the fascinating mechanism that allows roots and fungi to form a beneficial relationship (symbiosis). The fungus provides soil-nutrients to the tree and receives photosynthetic sugars from the tree. Like this both partners benefit from each other and stimulate each other’s growth. 
15.05 Därför är världen grön – om växter och deras försvar (svensk presentation)
  Benedicte Albrectson (forskare, Umeå Universitet) 
  Benedicte Albrectson, forskare vid UPSC, kommer att tala om hur växter försvar sig med hjälp av kemiska ämnen. Hon ska fokusera på en speciell klass av denna ämnen, som kallas fenoler, och förklara hur hennes forskargrupp analyserar dem.
15.30 Framtidens skogsgenetik med gamla fältförsök (svensk presentation)
  Anders Fries (forskare, SLU) 
  Anders Fries forskare i skogsgenetik ska berätta om vad gamla fältförsök har lärt dem om vedegenskaper och vad molekylärgenetiska studier i dem kan lära dem. Han kommer att ge en översikt.
[2016-12-14] Siamsa Doyle receives the UPSC Agrisera Prize 2016 for her excellent scientific contributions to unravel new functions of the endomembrane system. Her admirable scientific skills and efficiency led to several publications in high ranked journals like PNAS. Siamsa Doyle is also honoured for her outstanding contribution to improve the UPSC work environment.

DSC03882The UPSC Agrisera Prize is awarded every year to a PhD student, Postdoc or technician at UPSC for excellent scientific achievement that benefitted from Agrisera product. In addition to this, the candidate should have made a very positive contribution to the UPSC scientific environment by initiating for example valuable scientific discussions.

The prize is a personal cash prize in the form of a check and can be used for travel costs. The award was presented by Malgorzata Wessels from Agrisera and Catherine Bellini, chairman of the UPSC board.

Sucrose delivers the carbon for cellulose biosynthesis. To make the carbon available, sucrose needs to be enzymatically cleaved. This can be done by two classes of enzymes, sucrose synthases and invertases. Umut Rende from Umeå Plant Science Centre (UPSC) investigated how these two enzyme classes contribute to cellulose biosynthesis in aspen wood. He will defend his PhD thesis at the Swedish University of Agricultural Science on Thursday, the 8th of December 2016.

Invertase TreesControl (WT) and different transgenic aspen lines with reduced invertase activity.Umut Rende has focussed specifically on sucrose synthases and cytosolic neutral invertases, enzymes that are active in developing aspen wood. By analysing transgenic aspen trees with reduced enzyme activity of either sucrose synthases or neutral invertases he could show that neutral invertases are important for cellulose biosynthesis. Sucrose synthase on the other hand is not delivering carbon specifically for synthesis of cellulose but also for other cell wall components like lignin and hemicellulose. 

The transgenic trees Umut Rende and his collegues created grew normally in the greenhouse without any visible differences to non-modified trees. “That was quite disappointing at first,” says Umut Rende. “The total neutral invertase activity in our invertase mutants was reduced by about 50%. We had to look deep into the chemistry and structure of the wood in these trees to see that the cellulose content and the diameter of the cellulose fibrils was reduced. This very specific cellulose defect demonstrated that neutral invertase activity is critical for cellulose formation in developing wood of hybrid aspen.”

Formas has recently granted two research projects from Umeå Plant Science Centre (UPSC) that both aim to analyse the specific role of carbohydrate metabolism for wood formation. Ewa Mellerowicz, coordinator of one project, will study the role of Carbohydrate Active Enzymes in wood formation. Totte Niitylä, who is leading the other project, aims to analyse how carbohydrates are transported and integrated into the wood. The two researchers from UPSC will each receive about three million SEK from Formas.  

A large proportion of the woody biomass arises from carbohydrates. The two projects will analyse the carbohydrate metabolism in developing wood in spruce and aspen. Both tree species are fully sequenced model species and important for the Swedish forest industry. The researchers aim to identify factors that control the mechanical and chemical properties of wood and that influence specific wood traits like volume and density which are interesting for forestry. The outcome of these projects will provide new insights into wood formation in trees and will be very interesting for spruce and aspen breeding programs in Sweden.  

Ewa Mellerowicz, Professor at the Swedish University of Mellerowicz Ewa 1150Agricultural Science (SLU), is focussing in her research on so called wood matrix polysaccharides. These are long-chained carbohydrates that interact with the other wood cell wall components, cellulose and lignin, to form a rigid structure. They are synthesized and modified by Carbohydrate Active Enzymes (CAZYmes) and affect the mechanical and chemical properties of cell walls in wood cells. In her project, Ewa Mellerowicz and her colleagues want to identify CAZYmes that are involved in wood formation in spruce where wood carbohydrate metabolism is so far not well studied.

The researchers specifically plan to characterize how the expression of the identified spruce CAZYme genes is changing during the day and how this influences the deposition of carbohydrates to the cell wall. In a further step, Ewa Mellerowicz and her team will test the function of the identified spruce genes in aspen. The identification and characterisation of spruce CAZYmes will be not only valuable for understanding wood formation in conifers. The enzymes might be also interesting tools for industrial use.

Totte NiittyläTotte Niittyla 1150, group leader at UPSC, is interested in the transport of carbohydrates from photosynthetic tissues to the wood and their metabolism in the wood. He and his team are developing carbon-13 isotope flux measurements for aspen. The researchers expose aspen plants for a short time to carbon dioxide that is labelled with the heavy isotope carbon-13. Then, they analyse how the label is transported to and metabolised in developing wood. By determining which compounds are labelled combined with enzyme activity measurements the researchers around Totte Niittylä aim to identify new genes that control carbon fluxes during wood formation.

Chemicals modifying plant development are commonly used to characterize the molecular basis of plant growth. In collaboration with the Laboratories for Chemical Biology Umeå (LCBU), Thomas Vain from Umeå Plant Science Centre (UPSC) has identified novel compounds that control plant development. He also contributed to develop workflows for processing digital images to quantify relevant biological information from these images. Thomas Vain will defend his PhD thesis at the Swedish University of Agricultural Science on Friday, the 25th of November 2016.   

Thomas Vain and his colleagues from LCBU, Umeå University, have screened about 8000 different compounds on their effects on plant development using the model plant Arabidopsis thaliana. Their special focus was on compounds that alter how plants perceive auxin, a phytohormone broadly regulating plant development. The identified molecules are useful tools to study fundamental aspects of plant development and might lead to the design of more specific agrochemicals. 

20161123 Vain Press release Figure1A. thaliana seedlings and the chemical structure of the phytohormone auxin
A chemical biology screen like the one performed by Thomas Vain and his colleagues consist normally of several steps. In the first round, a large amount of compounds was tested and the most effective compounds were selected. These compounds were characterised further using different, more specific approaches to understand their mode of action. They ended up with several interesting compounds that affect the auxin signalling pathway, which effects unravel in detail auxin perception and response. 

Thomas Vain and his colleagues from the UPSC went even further. They chose one of their most affective compounds and performed a genetic screen with it. They used a population of randomly mutagenized Arabidopsis seedlings and screened for mutants that were resistant to the selected compound. The mutation in the resistant mutants will tell the researchers more about possible mediators of the effect of the selected compound. This will increase the understanding about how auxin is perceived and how responses to auxin are regulated.