Research
The aim of our research is to study energy production in microorganisms. The research covers several projects, of which the three main projects will briefly be presented below.
Hydrogen metabolism of Frankia
Nitrogen fixation occurs in Frankia both in free-living as well as in symbioses and may contribute as much as a quarter of the total yearly biologically fixed nitrogen globally in terrestrial ecosystem.
The most important recent achievement in the Frankia research field is the sequencing of three Frankia genomes. We were able to show that there are large differences in the genome sizes. Frankia EANpec1 was found to have the largest genome with 9.0 Mb, while Frankia ACN14a had an intermediate size of 7.5 Mb and Frankia HFPCcI3 was the smallest at 5.4 Mb. These numbers were correlated with geographical origin, host plant distribution and repeated sequences, such as IS. Our findings open up a new era in Frankia research, yielding possibilities to explore the molecular biology of Frankia.
An inevitable source of energy-inefficiency in the nitrogen-fixation process is the evolution of hydrogen; as much as 25% of the in vitro electron-flow through nitrogenase goes to hydrogen evolution. Some nitrogen-fixing systems have dealt with this problem of energy loss through evolving an extra enzyme, called uptake hydrogenase, which is very common in Frankia.
Cyanobacteria in association with boreal mosses
We were able to discover that cyanobacteria live in association with feather mosses in the boreal area. We also discovered that they are able of fixing nitrogen and thereby contributing to the N status of that ecosystem.
Heterotrophic production of lipids by algae
Algae are commonly autotrophic carbon dioxide fixing prokaryotes. They are also able of storing different compounds under a variety of conditions. This year a Thesis from my laboratory revealed that some microalgae are able to use glycerol as a carbon source under growing in heterotrophic conditions. Interestingly, a microalgae isolated in the lab and originating from Umeå area has this trait and also accumulated significant amounts of lipids under this condition.
Key Publications
- Leul M, Normand P, Sellstedt A (2009). The phylogeny of uptake hydrogenases. Int Microbiol. 12(1): 23-28.
- Normand et al., (2007). Genome structure reflects host biogeography in three plant symbionts Frankia sp. strains. Genome Research, 17, 7-15.
- Mohapatra A, Leul M, Mattsson U, Sellstedt A (2004). A hydrogen-evolving enzyme is present in Frankia R43. FEMS Microbiol.Lett.236: 235-240
- DeLuca TH, O Zackrisson, M-C Nilsson, A Sellstedt (2002). Quantifying nitrogen fixation in feather moss carpets. Nature. 419: 917-920.
- Nzayisenga JC, Eriksson K, Sellstedt A. 2018. Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as growth medium. Bioresource Technology 257: 260-265.
Team
- Since 2002: Professor at the Department of Plant Physiology, Umeå University, Umeå
- 1991: Senior lecturer, Umeå university
- 1990: Associate Professor/Docent, Umeå university
- 1989: Post Doc, Australia
- 1985: PhD, Plant Physiology, Umeå University
CV A. Sellstedt
Publications
Svenska
Det viktigaste framsteget på senare tid inom forskningen på Frankia och actinorhiza växter är utan tvekan sekvenseringen av tre Frankia-genom. Vi lyckades visa att det är en stor skillnad i storlek hos dessa tre genom. Hydrogenaserna tillhör en grupp, bestående av 13 enzymer som katalyserar vätgasomsättning, och vi har hitintills lyckats visa att även Frankia har ett hydrogenas med både upptags- och vätgasutvecklande funktion.
Frankia är en aktinomycet, en vanligt förekommande jordbakterie, som förutom att delta i vätgasmetabolism också har förmågan att fixera luftens kväve. Vid kvävefixeringen bildas också vätgas, som tyvärr här är en energikrävande biprodukt, som sänker effektiviteten för kvävefixeringen. Men vissa av kvävefixerande bakterie däribland Frankia har utvecklat vätgasoxiderande enzymer, upptagshydrogenas, som kan fånga upp vätgasen och göra den till energi för bakterien igen. Upptagshydrogenas är vanligt förekommande hos Frankia, som också har vätgasutvecklande funktion, som skulle kunna användas för vätgasproduktion.
Vår forskning på etanolproduktion från cellulosabaserad biomassa har visat att vi kan öka denna drastiskt med tillsats av två svampar: Chalara parvispora och Trametes versicolor.