Peter Marhavy at the confocal microscopePhoto: Fredrik Larsson

In my group, we are studying the mechanisms involved in short distance cell-to-cell communication in response to localized wound stress in plant roots using plant parasitic nematodes and state-of-the-art laser ablation approach.

Plants are able to recognize biotic, abiotic and physical stressors and orchestrate different signaling pathways accordingly. Although defensive stress response signals have been intensively studied and documented, the exact mechanisms by which these signals are perceived by cells and how the signal is further transmitted from one cell to another are still largely unknown. Our research will provide insights into molecular mechanisms of cell-to-cell communication to underlying early responses to wounding in plant roots.

Real-time monitoring of calcium wave propagation after cortex cell ablation using an R-GECO1 reporter line. Laser ablation of cortex cells leads to signal increases a few seconds after ablation at the ablated root side (indicated by white arrow). In non-ablated control roots, no changes of signal intensity were observed.
Arabidopsis root expressing SCR::SCR-YFP (green) in endodermis and stained with cell-wall fluorescence dye propidium iodide (red). Time lapse demonstrate single cell laser ablation in root meristem. White arrow indicates ablated cell.
Real-time monitoring (xyt) of cyst nematodes (Heterodera schachtii) during infection in 5-day-old roots of Arabidopsis thaliana stained with propidium iodide (red). Video demonstrate nematode progression between epidermal cells.