My lab investigates plant cell wall biosynthesis and carbohydrate metabolism in Arabidopsis, aspen and Norway spruce. We are interested in the molecular mechanisms responsible for sucrose transport to secondary cell wall forming cells, and the subsequent production of cell wall polymer precursors.
Photo: Fredrik Larsson
Transcriptional regulation plays an important role in these processes, and we are applying different genomics tools to identify transcription factors involved in woody biomass accumulation. We also work on carbohydrate active enzymes involved in the biosynthesis of arabinogalactan proteins (AGPs), which form a diverse group of cell surface- and wall-associated glycoproteins. We are interested in AGP’s role in cell wall biosynthesis, and the relationship between AGP glycosylation and AGP functionality.
A) Light microscopy picture of aspen wood fibers and vessels; B) Cross section of Arabidopsis stem. Lignified cell walls are shown in red and non-lignified in blue; C) Cross section of aspen stem; D) Siliques of wild type Arabidopsis and opnr-1 showing the seed abortion phenotype (left). Elongated zygotes of wild type and opnr-1 (middle). Confocal microscopy images showing the dual localisation of OPNR in nuclear envelope and mitochondria labelled with PHB3-mCherry (right).
In addition to wood biology we also explore novel fundamental cellular processes. One third of the genes in the model plant Arabidopsis remain of unknown function. Our ambition is to push new inroads to this unknown gene space. We are interested in identifying essential genes, which are indispensable for the function of a plant cell and constitute the minimum gene set required for cellular life.
Siliques of wild type Arabidopsis and opnr-1 showing the seed abortion phenotype (left). Elongated zygotes of wild type and opnr-1 (middle). Confocal microscopy images showing the dual localisation of OPNR in nuclear envelope and mitochondria labelled with PHB3-mCherry (right)
Our approach is to investigate evolutionarily-conserved single copy Arabidopsis genes of unknown function with predominant expression in meristematic cells. Evolutionarily-conserved single copy genes in flowering plants have been shown to be enriched in essential housekeeping functions. This exploratory project has led us to new areas of cell biology, and provide an adventure for those who do not fear the unknown.
Recently we identified an essential gene named OPENER (OPNR) in this project. opnr mutants show zygotic lethality and endosperm arrest, and intriguingly OPNR localizes to both nuclear envelope and mitochondria pointing to an uncharacterized essential process occurring in both nucleus and mitochondria in dividing plant cells.
Svensk sammanfattning
Key Publications
- Mahboubi A, Linden P, Hedenström M, Moritz T, Niittylä T (2015). Carbon-13 tracking after 13CO2 supply revealed diurnal patterns of wood formation in aspen. Plant Physiology 168: 478-489.
- Gerber L, Zhang B, Roach M, Rende U, Gorzsás A, Kumar M, Burgert I, Niittylä T and Sundberg B (2014). Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytologist 203: 1220 – 1230.
- Mahboubi A, Ratke C, Gorzsás A, Kumar M, Mellerowicz EJ, Niittylä T (2013). Aspen SUCROSE TRANSPORTER 3 allocates carbon into wood fibers. Plant Physiology 163, 1729-1740.
- Nystedt et al. (2013). The Norway spruce genome sequence gives insights into conifer genome evolution. Nature, 497, 579-584.
- Roach M, Gerber L, Sandquist D, Gorzsas A, Hedenström M, Kumar M, Steinhauser MC, Feil R, Daniel G, Stitt M, Sundberg B and Niittylä T (2012). Fructokinase is required for carbon partitioning to cellulose in aspen wood. Plant Journal, 70, 967 – 977.
CV Dr. Totte Niittyla
- 2000 MSc University of Helsinki
- 2004 PhD John Innes Centre, University of East Anglia, UK
- 2005 – 2008 Post Doc, Carnegie Institution for Science, California, USA
- 2009 – 2014 Assistant Professor, Swedish University of Agricultural Sciences
- 2015 – Associate Professor, Swedish University of Agricultural Sciences
Publication list
-
Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors
iScience 2021, 24(1):101966
-
The Spatio-Temporal Distribution of Cell Wall-Associated Glycoproteins During Wood Formation in Populus
Front. Plant Sci. 2020, 15 December
-
Comparison of tension wood and normal wood for oxidative nanofibrillation and network characteristics
Cellulose 2020, Nov 12, Open Access
-
A metabolite roadmap of the wood-forming tissue in Populus tremula
New Phytol. 2020 Jul 10 [Epub ahead of print]
-
CELLULOSE SYNTHASE INTERACTING 1 Is Required for Wood Mechanics and Leaf Morphology in Aspen
Plant J 2020 Jun 11 Online ahead of print
-
Golgi-localized exo-β1,3-galactosidases involved in cell expansion and root growth in Arabidopsis
JBC 2020, 295(31): 10581-10592
-
Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen
New Phytologist 2020, First published 03 June
-
Two-step derivatization for determination of sugar phosphates in plants by combined reversed phase chromatography/tandem mass spectrometry
Plant Methods 2019, 15(127)
-
Isolation and characterization of cellulose nanofibers from aspen wood using derivatizing and non-derivatizing pretreatments
Cellulose 2020, 27(1):185-203
-
Genome-Wide Association Study identified novel candidate loci affecting wood formation in Norway spruce
Plant J. 2019, 100(1):83-100
-
OPENER Is a Nuclear Envelope and Mitochondria Localized Protein Required for Cell Cycle Progression in Arabidopsis
Plant Cell 2019, 31(7):1446-1465
-
High Spatial Resolution Profiling in Tree Species
Annual Plant Reviews Online 2019
-
Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce
Plant Physiology 2018, 177 (3):1096-1107
-
Sucrose transport and carbon fluxes during wood formation
Physiologia Plantarum 2018, 164(1):67-81
-
Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development
Plant Cell. 2017, 29 (10):2433-2449
-
AspWood: High-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula
Plant Cell. 2017, 29 (7):1585-1604
-
Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood
J Exp Bot 2017, 68 (13):3529-3539
-
Laser Capture Microdissection Protocol for Xylem Tissues of Woody Plants
Front. Plant Sci., 04 January 2017
-
Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood
New Phytol. 2017, 214(2):796-807
-
Carbon-13 tracking after 13CO2 supply revealed diurnal patterns of wood formation in aspen
Plant Physiol. 2015; 168(2):478-489
-
Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers
New Phytol. 2014, 203(4):1220-1230
-
Aspen SUCROSE TRANSPORTER 3 allocates carbon into wood fibers
Plant Physiology 2013; 163(4):1729-1740
-
The Norway spruce genome sequence and conifer genome evolution
Nature 2013; 497(7451):579-584
-
Xue W, Ruprecht C, Street N, Hematy K, Chang C, Frommer WB, Persson S, Niittylä T
Paramutation-Like Interaction of T-DNA Loci in Arabidopsis
PLoS ONE 2012 7(12): e51651
-
Roach M, Gerber L, Sandquist D, Gorzsás A, Hedenström M, Kumar M, Steinhauser MC, Feil R, Daniel G, Stitt M, Sundberg B, Niittylä T
Fructokinase is required for carbon partitioning to cellulose in aspen wood
Plant Journal, 2012, 70(6):967 – 977
-
Niittylä T, Chauduri B, Sauer U and Frommer WB
Comparison of quantitative metabolite imaging tools and carbon-13 techniques for fluxomics
Methods Mol Biol, 2009, 553:355-372
-
Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX
Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis
Mol Cell Proteomics, 2007,6:1711-1726
-
Chaudhuri B, Niittylä T, Hörmann F, Frommer WB
Fluxomics with ratiometric metabolite dyes
Plant Signal Behav. 2007, 2(2):120-2
-
Niittylä T, Comparot-Moss S, Lue W-L, Messerli G, Trevisan M, Seymour MD, Gatehouse JA, Villadsen D, Smith SM, Chen J, Zeeman SC, Smith AM
Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals
J. Biol. Chem. 2006, 281:11815-11818
-
Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC
A previously unknown maltose transporter essential for starch degradation in leaves
Science 2004, 303:87-89
-
Smith AM, Zeeman SC, Niittylä T, Kofler H, Thorneycroft D, Smith SM
Starch degradation in leaves
J. Appl. Glycosci. 2003, 50:173-176
-
Zabela MD, Fernandez-Delmond I, Niittylä T, Sanchez P, Grant M
Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates
Mol. Plant Microbe Interact. 2002, 15:808-816