The research in my group is focused on mechanisms regulating plant growth and development. We are particularly interested in two key mechanisms: the roles played by plant growth regulating substances (plant hormones) in primary and secondary root de- velopment; and the role of hormones in the integra- tive coordination of above and below ground growth.

Ljung Karin 1150jpgAuxins and cytokinins are small organic molecules that are essential throughout the whole life cycle of higher plants.They play pivotal roles in the key growth and developmental processes of cell division, differentiation and elongation and central to the coordinated responses to environmental variables. Both hormones act in a concentration-dependent manner.A complex range of regulatory mechanisms act in concert to ensure that the levels are optimal for a specific tissue, developmental stage or environmental condition.We are studying auxin and cytokinin biosynthesis and degradation; how these pathways are regulated by internal and external signals; how they influence primary and secondary root development; and the coordination of root and shoot system functioning.

Hormone signalling pathways interact with each other during plant growth and development.Auxins and cytokinins have an important and complex interrelationship. Sometimes they act synergistically and sometimes antagonistically.We are only beginning to understand the mechanisms behind these interactions. My group are studying the regulation of auxin and cytokinin metabolism in Arabidopsis, and have shown that auxins and cytokinins have the capacity to regulate each other's biosynthesis (Jones et al., 2010).We are investigating the mechanisms behind these interactions, and their importance for different developmental processes in plants.We have also dis- covered a link between carbohydrate levels/signalling and auxin metabolism that clearly has implications for our understanding of the mechanisms by which plants modify their growth in ac- cordance with environmental conditions (Sairanen et al., 2012).

We have recently developed methods for auxin metabolite profiling in small amounts of Arabidopsis tissues, using liquid chromatography coupled to tandem mass spectrometry analysis (LC-MS/MS) (Novák et al., 2012), and we are now using this method to probe the auxin metabolome in different plants and tissues.We have previously shown that the Arabidopsis root system has a high auxin biosynthetic capacity (Petersson et al., 2009), and we are currently using our techniques for studying the pathways for auxin biosynthesis and degradation in root tissues (Pencík et al., 2013). We have also developed techniques for using Fluorescent Activated Cell Sorting (FACS) in combina- tion with mass spectrometry analysis to map auxin and auxin metabolite distribution and biosynthesis within the Arabidopsis root apex at cellular resolution (Petersson et al., 2009; Pencík et al., 2013). The formation of auxin gradients and maxima are essential for the specification of stem cell niches and for the regulation of cell division and differentiation in both root and shoot tissues.A better understanding of these basic cellular processes is important for the timely improvement of crop and tree growth and productivity.

Figure 2 550 Figure 3 550
Seven-day-old Arabidopsis seedlings growing on agar. Cross-section of a root, showing emerging lateral roots at different stages of development.

sweden_greySvensk samanfattning

Publications list

  1. The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water
    Curr Biol. 2018, 28(19):3165-3173
  2. Tissue-specific hormone profiles from woody poplar roots under bending stress
    Physiol Plant. 2018 Sep 5  [Epub ahead of print]
  3. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics
    PLANT PHYSIOLOGY 2018, 177 (2):476-489
  4. Broad spectrum developmental role of Brachypodium AUX1
    New Phytol. 2018, 219(4):1216-1223
  5. Control of root meristem establishment in conifers
    Physiol Plant. 2018 Jun 19  [Epub ahead of print]
  6. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate
    Nat Commun. 2018, 9(1):1408
  7. A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate
    Nat Commun. 2018, 9(1):1409
  8. Circadian clock components control daily growth activities by modulating cytokinin levels and cell division-associated gene expression in Populus trees
    Plant Cell Environ. 2018, 41 (6):1468-1482
  9. Ultra-Rapid Auxin Metabolite Profiling for High-Throughput Arabidopsis Mutant Screening
    J Exp Bot. 2018; 69 (10):2569-2579
  10. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness
    J Exp Bot. 2018, 69 (6):1415-1432
  11. Type B Response Regulators Act As Central Integrators in Transcriptional Control of the Auxin Biosynthesis Enzyme TAA1
    Plant Physiol 2017, 175(3):1438-1454
  12. Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy
    New Phytol. 2018, 217 (3):1077-1085
  13. Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal Medicago truncatula
    Plant Physiol. 2017, 175(1):392-411
  14. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature
    Nat Commun. 2017, 8(1):309
  15. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root
    Proc Natl Acad Sci U S A. 2017, 114(36):E7641-E7649
  16. Regulating plant physiology with organic electronics
    2017, 114(18):4597-4602
  17. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation
    Plant Physiol. 2017, 173(1):552-565
  18. SHADE AVOIDANCE 4 Is Required for Proper Auxin Distribution in the Hypocotyl
    Plant Physiol. 2017, 173(1):788-800
  19. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration
    Nat Commun. 2017 Mar 16;8:14752
  20. The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots
    PLANT CELL, 2016, 28(12):2937-2951
  21. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches
    Annu Rev Plant Biol. 2017, 68:323-348
  22. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth
    PLoS Genet. 2017 Feb 3;13(2):e1006607
  23. The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis
    PLANT PHYSIOLOGY 2016, 172 (2):874-888
  24. Contrasting patterns of cytokinins between years in senescing aspen leaves
    Plant Cell Environ. 2017, 40(5):622-634
  25. High-Resolution Cell-Type Specific Analysis of Cytokinins in Sorted Root Cell Populations of Arabidopsis thaliana
    Methods Mol Biol. 2017;1497:231-248
  26. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis
    Proc Natl Acad Sci U S A. 2016, 113(39):11016-11021
  27. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis
    Proc Natl Acad Sci U S A. 2016, 113(39):11022-11027
  28. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium
    PLANT CELL 2016, 28(5):1009-1024
  29. The epidermis coordinates auxin-induced stem growth in response to shade
    Genes Dev. 2016, 30(13):1529-41
  30. Local auxin metabolism regulates environment-induced hypocotyl elongation
    NATURE PLANTS 2016, 2 (4):10.1038
  31. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices
    PLoS Biol. 2016 Apr 27;14(4):e1002446 eCollection
  32. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light
    CELL 2016, 164 (1-2):233-245
  33. Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology
    Metabolomics. 2015;11(6):1679-1689
  34. Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex
    Plant Cell. 2015; 27(7):1955-1967
  35. The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana
    Nat Commun. 2015, 6:7641
  36. Development of the Populus-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signalling and response
    Plant Physiol. 2015, 169(1):890-902
  37. New mechanistic links between sugar and hormone signalling networks
    Curr Opin Plant Biol. 2015, 25:130-137
  38. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels
    New Phytol. 2015, 208(1):198-209
  39. Three ancient hormonal cues co-ordinate shoot branching in a moss
    eLife 2015;4:e06808
  40. An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants
    Plant Cell. 2015, 27(2):349-360
  41. Arabidopsis gulliver1/superroot2-7 identifies a metabolic basis for auxin and brassinosteroid synergy
    Plant J. 2014, 80(5):797-808
  42. Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis
    J Theor Biol. 2015, 366:57-70
  43. Directional auxin transport mechanisms in early diverging land plants
    Curr Biol. 2014 Dec 1;24(23):2786-91  Epub 2014 Nov 13
  44. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.
    Science. 2014, 345(6197):1255215

  45. Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa
    Plant Physiol. 2014; 165(3):1285-1301

  46. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply
    Plant Physiol. 2014, 166(1):384-95
  47. ADP1 affects plant architecture by regulating local auxin biosynthesis
    PLoS Genet. 2014 Jan;10(1):e1003954
  48. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis
    Proc Natl Acad Sci U S A. 2014, 111(17):6515-20
  49. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation
    J. Exp. Bot. (2014) 65 (6): 1605-1618.
  50. Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae)
    Plant Physiol Biochem. 2014; 79C:66-76
  51. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport
    Plant J. 2014; 77(3):393-403
  52. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis
    Nat Commun. 2013; 4:2625
  53. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid
    Plant Cell . 2013; 25(10):3858-3870

  54. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence
    Mol Syst Biol. 2013; 9:699
  55. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots
    PLoS Genet. 2013 Jun;9(6):e1003564  Epub 2013 Jun 20
  56. Spatial Coordination between Stem Cell Activity and Cell Differentiation in the Root Meristem
    Developmental Cell 2013; 26(4):405-15
  57. Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem
    The Plant Journal 2013, 75:685–698
  58. Alleviation of Zn toxicity by low water availability
    Physiol Plant. 2013, 150(3):412-424
  59. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability
    Plant Cell Environ. 2013; 37(1):162-174
  60. Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis
    Plant J. 2013 ;74(3):411-22
  61. Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1
    Nat Chem Biol. 2013, 9(4):244-6.  Epub 2013 Feb 3
  62. Auxin metabolism and homeostasis during plant development
    Development 2013, 140(5):943-50
  63. Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P
    Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex
    New Phytol. 2013; 197(4):1130-1141
  64. Sairanen I, Novák O, Pencík A, Ikeda Y, Jones B, Sandberg G, Ljung K
    Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in Arabidopsis
    Plant Cell. 2012 Dec 3. [Epub ahead of print]
  65. Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Chory J
    Linking photoreceptor excitation to changes in plant architecture
    Genes Dev. 2012, 26(8):785-90
  66. Tiwari A, Vivian-Smith A, Ljung K, Offringa R, Heuvelink E
    Physiological and morphological changes during early and later stages of fruit growth in Capsicum annuum
    Physiol Plant. 2013; 147(3):396-406
  67. Lilley JL, Gee CW, Sairanen I, Ljung K, Nemhauser JL
    An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation
    Plant Physiol. 2012 Oct 16. [Epub ahead of print]
  68. Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Ostergaard L
    Fruit Growth in Arabidopsis Occurs via DELLA-Dependent and DELLA-Independent Gibberellin Responses
    Plant Cell. 2012 Oct;24(10):3982-96
  69. Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K
    Tissue specific profiling of the Arabidopsis thaliana auxin metabolome
    Plant J. 2012 72(3):523-536
  70. Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I, Fankhauser C
    Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling
    Plant J. 2012 71(5):699-711
  71. Ståldal V, Cierlik I, Chen S, Landberg K, Baylis T, Myrenås M, Sundström JF, Eklund DM, Ljung K, Sundberg E
    The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering
    Plant Molecular Biology 2012, 78(6):545-559
  72. Band LR, Wells DM, Larrieu A, Sun J, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Péret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman TC, Pridmore TP, King JR, Vernoux T, Bennett MJ
    Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism
    PNAS 2012, 109(12):4668-4673
  73. Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM.
    The Arabidopsis YUCCA1 Flavin Monooxygenase Functions in the Indole-3-Pyruvic Acid Branch of Auxin Biosynthesis.
    Plant Cell 2011 [Epub ahead of print]
  74. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T.
    Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants.
    Proc Natl Acad Sci USA 2011 [Epub ahead of print]
  75. Jones B, Ljung K
    Subterranean space exploration: the development of root system architecture

    Curr Opin Plant Biol.  2012 15(1):97-102
  76. Jones B, Ljung K
    Auxin and cytokinin regulate each other's levels via a metabolic feedback loop
    Plant Signal Behav.: 2011, 6(6):901-4
  77. Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M
    The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings
    Current Biology: 2011 21:520-525
  78. Rizzardi K, Landberg K, Nilsson L, Ljung K, Sundas-Larsson A
    TFL2/LHP1 is involved in auxin biosynthesis through positive regulation of YUCCA genes
    Plant Journal: 2011 65:897-906
  79. Lucas M, Swarup R, Paponov IA, Swarup K, Casimiro I, Lake D, Peret B, Zappala S, Mairhofer S, Whitworth M, Wang JH, Ljung K, Marchant A, Sandberg G, Holdsworth MJ, Palme K, Pridmore T, Mooney S, Bennett MJ
    SHORT-ROOT regulates primary, lateral, and adventitious root development in Arabidopsis
    Plant Physiology: 2011 155:384-398
  80. Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J
    Role of polyamines in plant vascular development
    Plant Physiology and Biochemistry: 2010 48:534-539
  81. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A.
    Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants
    Developmental Cell: 2010 18:927-37
  82. Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU
    Hormonal control of the shoot stem-cell niche
    Nature: 2010 465:1089-1092
  83. Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B
    Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus
    Plant Physiology: 2010 153:128-144
  84. Wu G, Cameron JN, Ljung K, Spalding EP
    A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B
    The Plant Journal: 2010 62:179-191
  85. Eklund DM, Thelander M, Landberg K, Ståldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ERA, Kowalczyk M, Ljung K, Ronne H, Sundberg E
    Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens
    Development: 2010 137:1275-1284
  86. Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld J-P
    Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling
    The Plant Cell: 2010 22: 376-391
  87. Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL
    REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways
    Proceedings of the National Academy of Science of the United States of America: 2009 106:16883-16888
  88. Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O
    Control of bud activation by an auxin transport switch
    Proceedings of the National Academy of Sciences of the United States of America: 2009 106:17431-17436
  89. Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme K, Ljung K, Lee J-Y, Benfey P, Murray JAH, Scheres B, Perrot-Rechenmann C
    The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth
    PloS One: 2009 4:e6648
  90. Lewis DR, Wu G, Ljung K, Spalding EP
    Auxin transport into cotyledons and cotyledon growth depend similarly on the ABCB19 Multidrug Resistance-like transporter
    The Plant Journal: 2009 60:91-101
  91. Ali B, Sabri AN, Ljung K, Hasnain S
    Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.)
    World Journal of Microbiology and Biotechnology: 2009 25:519-526
  92. Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, Galván-Ampudia CS, Offringa R, Friml J, Yanovsky MF, Østergaard L
    A regulated auxin minimum is required for seed dispersal in Arabidopsis
    Nature: 2009 459: 583-586
  93. Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K
    An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis
    The Plant Cell: 2009 21:1659-1668
  94. Ikeda Y, Men S, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M
    Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis
    Nature Cell Biology: 2009 11:731-738
  95. Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y
    Cytokinin signaling regulates cambial development in poplar
    Proceedings of the National Academy of Sciences of the United States of America: 2008 105:20032-20037
  96. Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E
    Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis
    Molecular Plant: 2008 1:129-144
  97. Ståldal V, Sohlberg JJ, Eklund DM, Ljung K, Sundberg E
    Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium
    New Phytologist: 2008 180:798-808
  98. Swarup K, Benkova E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JDG, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ
    The auxin influx carrier LAX3 promotes lateral root emergence

    Nature Cell Biology: 2008 10:946-954
  99. Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, BallaréCL, Sandberg G, Noel JP, Chory J
    Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants
    Cell: 2008 133:164-176
  100. Andersen SU, Buechel S, Zhao Z, Ljung K, Novák O, Busch W, Schuster C, Lohmann JU
    Requirement of B2-Type Cyclin-Dependent Kinases for Meristem Integrity in Arabidopsis thaliana.
    The Plant Cell: 2008 20:88-100
  101. Larsson E, Sitbon F, Ljung K, von Arnold S.
    Inhibited polar auxin transport results in aberrant embryo development in Norway spruce
    New Phytologist: 2008 177:356-366
  102. Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benkova E
    Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution
    The Plant Cell: 2007 19:2197-2212
  103. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ
    Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation
    The Plant Cell: 2007 19: 2186-2196
  104. Yin X-J, Volk S, Ljung K, Mehlmer N, Dolezal K, Ditengou F, Hanano S, Davis SJ, Schmelzer E, Sandberg G, Teige M, Palme K, Pickart C, Bachmair A
    Ubiquitin lysine 63 chain-forming ligases regulate apical dominance in Arabidopsis
    The Plant Cell: 2007 19:1898-1911
  105. Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M
    Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity
    Current Biology: 2006 16:2143-2149
  106. Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E
    A gradient of auxin and auxin-dependent transcription precedes tropic growth responses
    Proc Natl Acad Sci U S A: 2006 103:236-241
  107. de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J
    Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis
    Proc Natl Acad Sci U S A: 2006 103:1627-1632
  108. Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C
    Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1
    Plant Cell: 2005 17:1343-1359
  109. Vanneste S, De Rybel B, Beemster GTS, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inze D, Fukaki H, Beeckman T
    Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana
    Plant Cell: 2005 17:3035-3050
  110. Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G, Hooykaas P, Offringa R
    Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis
    Plant Cell: 2005 17:2517-2526
  111. Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G
    Sites and regulation of auxin biosynthesis in Arabidopsis roots
    Plant Cell: 2005 17:1090-1104
  112. Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B
    A family of auxin-conjugate hydrolases that contributes to free indole- 3- acetic acid levels during Arabidopsis germination
    Plant Physiol: 2004 135:978-988
  113. Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PBF, Ljung K, Sandberg G, Hooykaas PJJ, Palme K, Offringa R
    A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux
    Science: 2004 306:862-865
  114. Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R
    Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile
    Proc Natl Acad Sci U S A: 2003 100:11795-11800
  115. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K
    AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis
    Cell: 2002 108:661-673
  116. Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G
    Biosynthesis, conjugation, catabolism and homeostasis of indole- 3- acetic acid in Arabidopsis thaliana
    Plant Molecular Biology: 2002 50:309-332
  117. Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B
    Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway
    Curr Biol: 2002 12:329-334
  118. Santamaria RTa, Bliek M, Ljung K, Sandberg G, Mol JNM, Souer E, Koes R
    FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture
    Genes Dev: 2002 16:753-763
  119. Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G
    Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings
    Plant Journal: 2002 29:325-332
  120. Tantikanjana T, Yong JW, Letham DS, Griffith M, Hussain M, Ljung K, Sandberg G, Sundaresan V
    Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene
    Genes Dev: 2001 15:1577-1588
  121. Ljung K, Ostin A, Lioussanne L, Sandberg G
    Developmental regulation of indole- 3- acetic acid turnover in Scots pine seedlings
    Plant Physiol: 2001 125:464-475
  122. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M
    Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex
    Genes Dev: 2001 15:2648-2653
  123. Ljung K, Bhalerao RP, Sandberg G
    Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth
    Plant J: 2001 28:465-474
  124. Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C
    The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis
    Proc Natl Acad Sci U S A: 2000 97:14819-14824
  125. Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrich R
    Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism
    Proc Natl Acad Sci U S A: 1999 96:12186-12191