The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis
Molecular & Cellular Proteomics 2020, 19(8): 1248-1262

Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu LD, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite JM, Rigal A, Harborough SRR, Persiau G, Vanneste S, Kirschner GK, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett M, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.

e-link to publication