Niittylä T, Comparot-Moss S, Lue W-L, Messerli G, Trevisan M, Seymour MD, Gatehouse JA, Villadsen D, Smith SM, Chen J, Zeeman SC, Smith AM
Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals
J. Biol. Chem. 2006, 281:11815-11818

We report that protein phosphorylation is involved in the control of starch metabolism in Arabidopsis leaves at night. sex4 (starch excess 4) mutants, which have strongly reduced rates of starch metabolism, lack a protein predicted to be a dual specificity protein phosphatase. We have shown that this protein is chloroplastic and can bind to glucans and have presented evidence that it acts to regulate the initial steps of starch degradation at the granule surface. Remarkably, the most closely related protein to SEX4 outside the plant kingdom is laforin, a glucan-binding protein phosphatase required for the metabolism of the mammalian storage carbohydrate glycogen and implicated in a severe form of epilepsy (Lafora disease) in humans.

E-link to publications