Salchert K, Bhalerao R, Koncz-Kalman Z, Koncz C
Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants
Philosophical Transactions of the Royal Society of London Series B-Biological Sciences: 1998 353:1517-1520
Molecular analysis of Arabidopsis mutants displaying hypocotyl elongation defects in both the dark and light revealed recently that steroids play an essential role as hormones in plants. Deficiencies in brassinosteroid biosynthesis and signalling permit photomorphogenic development and light-regulated gene expression in the dark, and result in severe dwarfism, male sterility and de-repression of stress-induced genes in the light. A cytochrome P450 steroid hydroxylase (CYP90) controls a rate limiting step in brassinosteroid biosynthesis and appears to function as a signalling factor in stress responses. Another key step in steroid biosynthesis is controlled by the Arabidopsis SNF1 kinases that phosphorylate the 3-hydroxy-3methylglutaryl-CoA reductase. The activity of SNF1 kinases is regulated by PRL1, an evolutionarily conserved alpha-importin-binding nuclear WD-protein. The Prl1 mutation results in cell elongation defects, de-repression of numerous stress-induced genes, and augments the sensitivity of plants to glucose, cold stress and several hormones, including cytokinin, ethylene, auxin, and abscisic acid.
e-link to journal