Clarke AK, Hurry VM, Gustafsson P, Oquist G
2 Functionally Distinct Forms of the Photosystem-Ii Reaction-Center Protein D1 in the Cyanobacterium Synechococcus Sp Pcc 7942
Proceedings of the National Academy of Sciences of the United States of America: 1993 90:11985-11989
The cyanobacterium Synechococcus sp. PCC 7942 possesses a small psbA multigene family that codes for two distinct forms of the photosystem II reaction-center protein D1 (D1:1 and D1:2). We showed previously that the normally predominant D1 form (D1:1) was rapidly replaced with the alternative D1:2 when cells adapted to a photon irradiance of 50 mumol/m-2.s-1 are shifted to 500 mumol.m-2.s-1 and that this interchange was readily reversible once cells were allowed to recover under the original growth conditions. By using the psbA inactivation mutants R2S2C3 and R2K1 (which synthesize only D1:1 and D1:2, respectively), we showed that this interchange between D1 forms was essential for limiting the degree of photoinhibition as well as enabling a rapid recovery of photosynthesis. In this report, we have extended these findings by examining whether any intrinsic functional differences exist between the two D1 forms that may afford increased resistance to photoinhibition. Initial studies on the rate of D1 degradation at three photon-irradiances (50, 200, and 500 mumol.m-2.s-1) showed that the rates of degradation for both D1 forms increase with increasing photon flux density but that there was no significant difference between D1:1 and D1:2. Analysis of light-response curves for oxygen evolution for the mutants R2S2C3 and R2K1 revealed that cells with photosystem II reaction centers containing D1:2 have a higher apparent quantum yield (almost-equal-to 25%) than cells possessing D1:1. Further studies using chlorophyll a fluorescence measurements confirmed that R2K1 has a higher photochemical yield than R2S2C3, that is, a more efficient conversion of excitation energy from photon absorption into photochemistry. We believe that the higher photochemical efficiency of reaction centers containing D1:2 is causally related to the preferential induction of D1:2 at high light and thus may be an integral component of the protection mechanism within Synechococcus sp. PCC 7942 against photoinhibition.
e-link to journal