Karpinski S, Wingsle G, Karpinska B, Hallgren JE
Molecular Responses to Photooxidative Stress in Pinus-Sylvestris (L) .2. Differential Expression of Cuzn-Superoxide Dismutases and Glutathione-Reductase
Plant Physiology: 1993 103:1385-1391
The influence of photooxidative stress on genes expressing superoxide dismutase (Sod) and glutathione reductase (Gor) was analyzed in needles of top and side shoots of 3-year-old Pinus sylvestris (L) seedlings. The study was carried out in the field during spring recovery. From mid-April the top shoots of seedlings protruded above the snow and thus were exposed to sunlight, whereas the side shoots were covered with snow until May 4. Needles were sampled from top and side shoots on five different occasions. At the beginning of May the mRNA levels for cytosolic CuZn-Sod were significantly higher in top-shoot needles than in side-shoot needles. Similar results were obtained for chloroplastic CuZn-Sod mRNA. After May 6 we could not detect any significant differences between top- and side-shoot needles for either CuZn-Sod mRNA level. Transcript accumulation for the chloroplastic CuZn-Sod was up to 4-fold higher than for cytosolic CuZn-Sod in both types of shoots. On June 1 minimum transcript levels were observed for both CuZn-SOD isoforms. Protein activity analysis for CuZn-SOD isozymes did not reveal any significant differences between top- and side-shoot needles during the whole period of measurements. The mRNA level for chloroplastic Gor was similar in both types of shoots. However, the total GR activity was significantly higher in top-shoot needles than in side-shoot needles at the beginning of May. The analysis of mRNA accumulation for chloroplastic CuZn-Sod and Gor indicates that transcript levels were at least 5- to 20-fold higher for CuZn-Sod than for chloroplastic Gor. The differential expressions of Sod and Gor genes are discussed in relation to regulation of the enzymic scavenging system during photooxidative stress conditions.
e-link to journal