Gustafsson P, Jansson S, Lidholm J, Lundberg AK
Structure and Regulation of Photosynthesis Genes in Pinus-Sylvestris (Scots Pine) and Pinus-Contorta (Lodgepole Pine)
Forest Ecology and Management: 1991 43:287-300
The structure and regulation of one nuclear and one chloroplast gene was studied in Pinus sylvestris (Scots pine) and Pinus contorta (lodgepole pine). cDNA copies of the nuclear located cab genes of Pinus sylvestris, coding for the light-harvesting chlorophyll a/b-binding proteins of photosystem II (LHC-II), were cloned. cab-II genes coding for both types of LHC-II polypeptides, Types 1 and 2, were found. An analysis of the DNA sequences of several different cab-II cDNAs shows that they have a high bias for the nucleotides G and C at the third base positions of the codons, making them more similar to monocot than to dicot genes. Two of the three genes were found to be located within CpG islands. The cab-II genes were found to be expressed in dark-grown seedlings in contrast to what has been found for most angiosperms. The chloroplast genomes of conifers were shown to lack the inverted repeat organization normally found in higher plants, mosses and green algae. The psbA gene, located in the chloroplast genome and coding for the D1 polypeptide in the reaction center of photosystem II, was found to be tandemly duplicated in P. contorta. Cloning and sequence analysis of the two psbA genes and the surrounding regions showed that the duplicated segment is 1.97 kb long and that it ends 19 bp downstream from the psbA stop codon. The corresponding locus of P. sylvestris, which lacks the duplication, was cloned and characterized. A comparison with P. contorta indicates how the duplication/insertion event has occurred. A comparison of third codon position between P. contorta psbA and that of other plants indicated an almost equidistant evolutionary relationship between P. contorta, spinach (or barley) and Marchantia polymorpha.
e-link to journal